
Disorder generated by interacting neural networks: application to econophysics and

cryptography

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 11173

(http://iopscience.iop.org/0305-4470/36/43/035)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/43
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 11173–11186 PII: S0305-4470(03)60850-4

Disorder generated by interacting neural networks:
application to econophysics and cryptography

Wolfgang Kinzel1 and Ido Kanter2

1 Institut für Theoretische Physik, Universität Würzburg, Am Hubland, 97074 Würzburg,
Germany
2 Department of Physics, Bar Ilan University, Ramat Gan, Israel

Received 13 March 2003
Published 15 October 2003
Online at stacks.iop.org/JPhysA/36/11173

Abstract
When neural networks are trained on their own output signals they generate
disordered time series. In particular, when two neural networks are trained
on their mutual output they can synchronize; they relax to a time-dependent
state with identical synaptic weights. Two applications of this phenomenon
are discussed for (a) econophysics and (b) cryptography. (a) When agents
competing in a closed market (minority game) are using neural networks to
make their decisions, the total system relaxes to a state of good performance.
(b) Two partners communicating over a public channel can find a common
secret key.

PACS numbers: 87.18.Sn, 05.20.−y, 75.10.Nr, 89.65.Gh

1. Introduction

Artificial neural networks are adaptive systems which are trained on a set of examples, usually
a set of high-dimensional input/output data. Models and methods of statistical physics have
greatly contributed to the understanding of such complex systems [1, 2]. Mainly the following
scenario has been investigated: a static network—the teacher—is generating a set of examples
and a different network—the student—is adapting its couplings to this set. The student net
does not only learn the examples, but it also learns to generalize, the student receives an
overlap to the teacher.

The examples considered by statistical mechanics are usually pairs of input/output data.
The input is a high-dimensional vector and the output is—in the simplest classification
problem—a single bit. Typically, in the analytic theory the input vectors used by the teacher
are drawn randomly from some distribution. If the student has all the examples available for
the training process it tries to minimize the training error. Hence we obtain an optimization
problem with quenched disorder which is similar to finding the ground states of spin glasses
[3]. However, if the examples are not stored but appear only once during the training process

0305-4470/03/4311173+14$30.00 © 2003 IOP Publishing Ltd Printed in the UK 11173

http://stacks.iop.org/ja/36/11173

11174 W Kinzel and I Kanter

(on-line learning) the student follows each example by a given algorithm. In this case, we
obtain a dynamical process for the couplings of the student network. Both kinds of models
have been solved exactly in the limit of infinitely large networks [2].

In this paper, we report on a different scenario: all of the participating networks are
generating examples and are trained on them. Hence we consider the complex dynamics
of interacting adaptive systems. In some cases even the input vectors are generated by the
interacting networks, no external randomness is necessary. Nevertheless, it turns out that the
system is generating dynamic disorder, it functions as a kind of random number generator.
But in contrast to standard pseudorandom number generators, the participating networks are
trained on the sequence which they are generating. We find several applications of this
scenario: unpredictable time series, competing agents in closed markets (minority game),
synchronization by mutual learning and generation of secret keys over a public channel.

2. Self-interaction

We start our discussion on dynamic disorder and its applications with a single neural network.
A simple perceptron—or its multilayer extension—is generating an output bit [4]. This bit
is used for the next training step, the couplings of the perceptron are changed according to
the corresponding input/output pair (Hebbian rule). Then one of the components of the input
vector is replaced by the output bit and a new output bit is calculated. By iterating this process
the network is generating a bit sequence. Note, that the network is interacting with itself, it is
learning examples which are generated by the network itself. In the following, we discuss the
bit generator in the context of time series prediction.

2.1. Unpredictable time series

A neural network is an efficient and simple algorithm to predict a given sequence of numbers
[5]. It is trained on a part of the sequence and makes predictions on how the sequence will
continue in the next few time steps. We want to consider the general question, whether a
prediction algorithm, in particular a neural network, is able to predict any given time series
better than random guessing. Before we address this question we define the neural network.

The simplest mathematical neural network is the perceptron [1, 2]. It consists of a single
layer of N synaptic weights w = (w1, . . . , wN). For a given input vector x, the output bit is
given by

σ = sign

(
N∑

i=1

wixi

)
. (1)

The decision surface of the perceptron is just a hyperplane in the N-dimensional input
space, w · x = 0. A perceptron may also have a continuous output y as

y = tanh

(
N∑

i=1

wixi

)
. (2)

A perceptron may be considered as an elementary unit of a more complex network such
as an attractor network or a multilayer network. In fact any function can be approximated by
a multilayer network if the number of hidden units is large enough.

A neural network learns from examples. For our perceptron, examples are pairs of input
vectors and output bits,

(x(t), σ (t)) t = 1, . . . , αN. (3)

Disorder generated by interacting neural networks 11175

On-line training means that at each time step t the weights of the perceptron adapt to a
new example, for instance by the rule

w(t + 1) = w(t) +
η

N
σ(t)x(t)F (σ (t)x(t) · w(t)). (4)

F(z) = 1 is usually called—after the corresponding biological mechanism—the Hebbian
rule, each synapse wi responds to the activities σ(t)xi(t) at its two ends. F(z) = �(−z) is
called the Rosenblatt rule: a training step occurs only if the example is misclassified. For the
Rosenblatt rule a mathematical theorem can be proven: if the examples can be classified by
any perceptron at all, then this rule will find a solution.

Now we consider time series prediction. Consider some arbitrary prediction algorithm.
It may contain all the knowledge of mankind, many experts may have developed it. For a
given bit sequence S1, S2, . . . , the algorithm has been trained on the first t bits S1, . . . , St .
Can it predict the next bit St+1? Is the prediction error, averaged over a large t interval, less
than 50%?

If the bit sequence is random then every algorithm will give a prediction error of 50%.
But if there are some correlations in the sequence then a clever algorithm should be able to
reduce this error. In fact, for the most powerful algorithm one is tempted to say that for any
sequence it should perform better than 50% error. However, this is not true [6]. To see this
just generate a sequence S1, S2, S3, . . . using the following algorithm:

Define St+1 to be the opposite of the prediction of this
algorithm which has been trained on S1, . . . , St .

Now, if the same algorithm is trained on this sequence, it will always predict the following
bit with 100% error. Hence there is no general prediction machine; to be successful the
algorithm needs some pre-knowledge about the class of problems it is applied to.

The Boolean perceptron (1) is a very simple prediction algorithm for a bit sequence, in
particular with the Hebbian on-line training algorithm (4). What does the bit sequence look
like for which the perceptron fails completely?

Following (4), we just have to take the negative value

St = −sign

 N∑

j=1

wj St−j

 (5)

and then train the network on this new bit:

�wj = +
1

N
St St−j . (6)

The perceptron is trained on the opposite (negative) of its own prediction. Starting from (say)
random initial states S1, . . . , SN and weights w, this procedure generates a sequence of bits
S1, S2, . . . , St , . . . and of vectors w, w(1), w(2), . . . , w(t), . . . as well. Given this sequence
and the same initial state, the perceptron which is trained on it yields a prediction error
of 100%.

It turns out that this simple algorithm produces a rather complex bit sequence which
comes close to a random one [7]. After a transient time the weight vector w(t) seems to
perform a kind of random walk on an N-dimensional hypersphere. The bit sequence runs to a
cycle whose average length L scales exponentially with N,

L � 2.2N . (7)

The autocorrelation function of the sequence shows complex properties: it is close to zero
up to N, oscillates between N and 3N and it is similar to random noise for larger distances.

11176 W Kinzel and I Kanter

Its entropy is smaller than the one of a random sequence since the frequency of some patterns
is suppressed. Of course, it is not random since the prediction error is 100% instead of 50%
for a random bit sequence.

When a second perceptron (student) with different initial state wS is trained on such a
anti-predictable sequence generated by equation (5) it can perform somewhat better than the
teacher: the prediction error goes down to about 78% but it is still larger than 50% for random
guessing. Related to this, the student obtains knowledge about the teacher: the angle between
the two weight vectors relaxes to about 45◦ [6, 7]. Hence the complex anti-predictable sequence
still contains enough information for the student to follow the time-dependent teacher.

In fact, the disorder of the generated bit sequence helps to learn the rule. A simple
sequence can be learned well but it is difficult to obtain an overlap to the rule. A complex
sequence, however, is difficult to predict but the rule can be estimated with great precision
[8–10].

2.2. Agents competing in a closed market

We just considered a simple network interacting with itself. Now we extend this model to a
multilayer network consisting of several perceptrons. The output bit is just the sign of the
majority of the perceptrons, hence this network is called a committee machine. As before, the
network is trained on the negative of its own output bit, which afterwards is used for the input.
This multilayer network may also be considered as a system of many perceptrons interacting
with the minority decision of all members. This work was motivated by the following problem
of econophysics [11].

Recently a mathematical model of economy has received a lot of attention in the
community of statistical physics. It is a simple model of a closed market: there are K
agents (K is an odd integer) who have to make a binary decision σ(t) ∈ {+1,−1} at each time
step. All of the agents who belong to the minority gain one point, the majority has to pay one
point (to a cashier which always wins). The global loss is given by

G =
∣∣∣∣∣

K∑
t=1

σ(t)

∣∣∣∣∣ . (8)

If the agents come to an agreement before they make a new decision, it is easy to minimize
G : (K − 1)/2 agents have to choose +1, then G = 1. However, this is not the rule of the
game; the agents are not allowed to make contracts, and communicate only through the global
sum of decisions. Each agent knows only the history of the minority decision, S1, S2, S3, . . . ,

but otherwise he/she has no information. Can the agent find an algorithm to maximize his/her
profit?

If each agent makes a random decision, then 〈G2〉 = K . It is possible, but not trivial, to
find algorithms which perform better than random [12].

Here we use a perceptron for each agent to make a decision based on the past N steps
S = (St−N, . . . , St−1) of the minority decision. The decision of agent w(t) is given by

σ(t) = sign(w(t) · S). (9)

After the bit St of the minority has been determined, each perceptron is trained on this new
example (S, St),

�w(t) = η

N
St S. (10)

This problem could be solved analytically [13]. The average global loss for η → 0 is given by

〈G2〉 = (1 − 2/π)K � 0.363K. (11)

Disorder generated by interacting neural networks 11177

Hence, for small enough learning rates the system of interacting neural networks performs
better than random decisions. A successful strategy emerges from the cooperation of adaptive
perceptrons.

2.3. Cooperation between random walks

For many applications of neural networks, discrete couplings are preferred over continuous
ones. For generalization, discrete couplings limit the ability to learn a rule when an on-line
algorithm is used [14]. In contrast, synchronization of discrete weights of multilayer networks
[17] or fully connected networks [22] can be easily achieved by mutual learning. Hence,
multilayer networks with discrete couplings are potential candidates for novel algorithms in
public channel cryptography, as discussed later in this paper. Therefore, we have studied such
networks in the context of self-learning discussed before. It turns out that such networks may
be considered as an ensemble of random walks with reflecting boundaries, triggered by global
signals which are generated by the ensemble.

Each synaptic weight of our perceptron, wi , is now limited to integers between ±L,

wi ∈ {−L,−L + 1, . . . , L − 1, L}. (12)

For a given input vector x with binary components the perceptron produces an output bit
σ = sign(w · x) which is used for the anti-Hebbian training step

w(t + 1) = w(t) − σx. (13)

The weights remain in the interval (12), therefore if any component moves out of the
allowed range it is set back to the boundary wi = ±L.

After the training step the output bit σ replaces the first bit of the shifted input vector, we
use the same feedback as before.

Our simulations show that this perceptron being trained on its negative output bit has
similar properties to the corresponding network with continuous couplings [15]. It generates
a bit sequence which is hard to distinguish from a random one. But a closer investigation of
correlations shows similar patterns as before.

Since the input sequence of the network is close to random, each component wi performs
a kind of random walk on 2L + 1 sites with reflecting boundaries. However, the ensemble
itself generates the noise which determines the direction of motion for each walk. Note that
the walk is deterministic; except for the random initial state, no random numbers are used for
the dynamics.

Later in this paper, discussing cryptography, we use a multilayer network consisting of
K perceptrons with discrete weights. The architecture is tree-like, each perceptron receives a
different input vector wk, k = 1, . . . , K . The output bit of the total network is the product of
the K hidden units,

τ =
K∏

k=1

σk σk = sign(wk · xk). (14)

This network is called a parity machine, since its output is determined by the parity of the
hidden units in the 0, 1 bit notation.

For each time step, the hidden output bit σk is used for the corresponding input vector xk .
However, only if the hidden unit σk agrees with the output bit τ are the corresponding weights
wk changed according to the rule (13). Our numerical simulations show that the generated bit
sequence passes many tests of random number generators, we could not detect any correlations
[15]. Later in this paper we will see that this property helps to encrypt secret messages.

11178 W Kinzel and I Kanter

w
σσ

w

x

Figure 1. Two perceptrons are trained by their mutual output bits, from [13].

3. Mutual learning

In the previous section, we have investigated the properties of single neural networks trained
on their own output. Now we study a system of two neural networks, perceptrons or multilayer
networks, which learn from their partners. We find a novel phenomenon, a phase transition to
synchronization [13], and we use it for a novel algorithm in public channel cryptography [17].

3.1. Synchronization

We consider the model where two perceptrons A and B receive a common random input vector
x and change their weights w according to their mutual bit σ , as sketched in figure 1. The
output bit σ of a single perceptron is given by the equation

σ = sign(w · x) (15)

where x is an N-dimensional input vector with components which are drawn from a Gaussian
with mean 0 and variance 1. w is an N-dimensional weight vector with continuous components
which are normalized,

w · w = 1. (16)

The initial state is a random choice of the components w
A/B
i , i = 1, . . . , N for the two

weight vectors wA and wB. At each training step a common random input vector is presented
to the two networks which generate two output bits σ A and σ B according to (15). Now the
weight vectors are updated by the Rosenblatt learning rule (4):

wA(t + 1) = wA(t) +
η

N
xσ B�(−σ Aσ B)

wB(t + 1) = wB(t) +
η

N
xσ A�(−σ Aσ B)

(17)

where �(x) is the step function. Hence, only if the two perceptrons disagree is a training step
performed with a learning rate η. After each step (17), the two weight vectors are normalized.

In the limit N → ∞, the overlap

R(t) = wA(t) · wB(t) (18)

has been calculated analytically [13]. The number of training steps t is scaled as α = t/N ,
and R(α) follows the equation

dR

dα
= (R + 1)

(√
2

π
η(1 − R) − η2 φ

π

)
(19)

Disorder generated by interacting neural networks 11179

0 0.5 1 1.5 2
η

–1

–0.5

0

0.5

1

co
s(

θ)

theory
simulation

ηc

cos(θ)c

Figure 2. Final overlap R between two perceptrons as a function of learning rate η. Above a
critical rate ηc the time-dependent networks are synchronized (from [13]).

where φ is the angle between the two weight vectors wA and wB, i.e. R = cos φ. This equation
has fixed points R = 1, R = −1, and

η√
2π

= 1 − cos φ

φ
. (20)

Figure 2 shows the attractive fixed point of (19) as a function of the learning rate η. For
small values of η the two networks relax to a state of mutual agreement, R → 1 for η → 0.
With increasing learning rate η the angle between the two weight vectors increases up to the
value φ = 133◦ for

η → ηc ∼= 1.816. (21)

Above the critical rate ηc the networks relax to a state of complete disagreement, φ =
180◦, R = −1. The two weight vectors are antiparallel to each other, wA = −wB.

As a consequence, the analytic solution shows, well supported by numerical simulations
for N = 100, that two neural networks can synchronize with each other by mutual learning.
Both of the networks are trained to the examples generated by their partners and finally obtain
an antiparallel alignment. Even after synchronization the networks keep moving, the motion
is a kind of random walk on an N-dimensional hypersphere producing a rather complex bit
sequence of output bits σ A = −σ B [7]. In fact, after synchronization the system is identical
to the single network learning its opposite output bit, discussed in section 2.1.

3.2. Neural cryptography

In the field of cryptography, one is interested in methods to transmit secret messages between
two partners A and B. An attacker E who is able to listen to the communication should not be
able to recover the secret message.

Before 1976, all cryptographic methods had to rely on secret keys for encryption which
were transmitted between A and B over a secret channel not accessible to any attacker. Such
a common secret key can be used, for example, as a seed for a random bit generator by which
the bit sequence of the message is added (modulo 2).

In 1976, however, Diffie and Hellmann found that a common secret key could be created
over a public channel accessible to any attacker. This method is based on number theory: given
limited computer power, it is not possible to calculate the discrete logarithm of sufficiently
large numbers [16].

11180 W Kinzel and I Kanter

Here we discuss a completely different method of generating secret keys. We have shown
that interacting neural networks can produce a common secret key by exchanging bits over a
public channel and by learning the bits of their partners [17].

We apply synchronization of neural networks to cryptography. In the previous section we
have seen that the weight vectors of two perceptrons learning from each other can synchronize.
The new idea is to use the common weights wA = −wB as a key for encryption. But two
problems have yet to be solved: (i) can an external observer, recording the exchange of
bits, calculate the final wA(t), (ii) does this phenomenon exist for discrete weights? Point
(i) is essential for cryptography, it will be discussed further below. Point (ii) is important
for practical solutions since communication is usually based on bit sequences. It will be
investigated in the following.

Synchronization occurs for normalized weights, unnormalized ones do not synchronize
[13]. Therefore, for discrete weights, we introduce a restriction in the space of possible vectors
and limit the components w

A/B
i to 2L + 1 different values,

w
A/B
i ∈ {−L,−L + 1, . . . , L − 1, L}. (22)

In order to obtain synchronization to a parallel—instead of an antiparallel—state wA = wB,
we modify the learning rule (17) to

wA(t + 1) = wA(t) − xσ A�(σ Aσ B)

wB(t + 1) = wB(t) − xσ B�(σ Aσ B).
(23)

Now the components of the random input vector x are binary xi ∈ {+1,−1}. If the two
networks produce an identical output bit σ A = σ B, then their weights move one step in the
direction of −xiσ

A. But the weights should remain in the interval (22), therefore if any
component moves out of this interval, it is set back to the boundary wi = ±L.

Each component of the weight vectors performs a kind of random walk with reflecting
boundary. Two corresponding components wA

i and wB
i receive the same random number

±1. After each hit at the boundary the distance
∣∣wA

i − wB
i

∣∣ is reduced until it has reached
zero. For two perceptrons with an N-dimensional weight space we have two ensembles of
N random walks on the internal {−L, . . . , L}. We expect that after some characteristic time
scale τ = O(L2) the probability of two random walks being in different states decreases as

P(t) ∼ P(0) e−t/τ . (24)

Hence the total synchronization time should be given by N · P(t) � 1 which gives

tsync ∼ τ ln N. (25)

In fact, the simulations for N = 100 show that two perceptrons with L = 3 synchronize in
about 100 time steps and the synchronization time increases logarithmically with N. However,
the simulations also showed that an attacker, recording the sequence of (σ A, σ B, x)t is able to
synchronize, too. Therefore, a single perceptron does not allow the generation of a secret key.

Obviously, a single perceptron transmits too much information. An attacker, who knows
the set of input/output pairs, can derive the weights of the two partners after synchronization.
Therefore, one has to hide so much information that the attacker cannot calculate the weights,
but on the other side one has to transmit enough information that the two partners can
synchronize.

In fact, it was shown that multilayer networks with hidden units may be candidates for
such a task [17–19]. More precisely, we consider parity machines with three hidden units as
shown in figure 3. Each hidden unit is a perceptron (1) with discrete weights (22). The output
bit τ of the total network is the product of the three bits of the hidden units

τA = σ A
1 σ A

2 σ A
3 τB = σ B

1 σ B
2 σ B

3 . (26)

Disorder generated by interacting neural networks 11181

τ

x

Π

w

σ

Figure 3. Parity machine with three hidden units.

At each training step the two machines A and B receive identical input vectors x1, x2, x3. The
training algorithm is the following: only if the two output bits are identical, τA = τB, can the
weights be changed. In this case, only the hidden unit σi which is identical to τ changes its
weights using the Hebbian rule

wA
i (t + 1) = wA

i (t) − xiτ
A. (27)

For example, if τA = τB = 1 there are four possible configurations of the hidden units in each
network:

(+1, +1, +1), (+1,−1,−1), (−1, +1,−1), (−1,−1, +1).

In the first case, all three weight vectors w1, w2, w3 are changed, in all the other three cases
only one weight vector is changed. The partner as well as any attacker does not know which
one of the weight vectors is updated.

The partners A and B react to their mutual stop and move signals τA and τB, whereas
an attacker can only receive these signals but not influence the partners with its own output
bit. This is the essential mechanism which allows synchronization but prohibits learning.
Numerical [17] as well as analytical [18] calculations of the dynamic process show that the
partners can synchronize in a short time whereas an attacker needs a much longer time to lock
into the partners.

This observation holds for an observer who uses the same algorithm (27) as the two
partners A and B. Note that the observer knows (1) the algorithm of A and B, (2) the input
vectors x1, x2, x3 at each time step and (3) the output bits τA and τB at each time step.
Nevertheless, it does not succeed in synchronizing with A and B within the communication
period.

Since for each run the two partners draw random initial weights and since the input
vectors are random, one obtains a distribution of synchronization times as shown in figure 4
for N = 100 and L = 3. The mean value of this distribution is shown as a function of
system size N in figure 5. Even a very large network needs only a relatively small number of
exchanged bits—about 400 in this case—to synchronize. The figure even seems to indicate
that the synchronization time is finite for N → ∞, but similar arguments as given above show
tsync ∼ log N .

If the communication continues after synchronization, an attacker has a chance to lock
into the moving weights of A and B. Figure 6 shows the distribution of the ratio between the
synchronization time of A and B and the learning time of the attacker. In the simulations
for N = 100, this ratio never exceeded the value r = 0.1, and the average learning time is
about 50 000 time steps, much larger than the synchronization time. Hence, the two partners
can take their weights wA

i (t) = wB
i (t) at a time step t where synchronization most probably

occurred as a common secret key. Synchronization of neural networks can be used as a key
exchange protocol over a public channel.

11182 W Kinzel and I Kanter

0 1000
t_sync

0

200

400

600

800

P
(t

_s
yn

c)

Figure 4. Distribution of synchronization time for N = 100, L = 3 (from [17]).

0 0.02 0.04 0.06 0.08 0.1
1/N

0

500

1000

t_av

Figure 5. Average synchronization time as a function of inverse system size.

0 0.02 0.04 0.06 0.08
r

0

100

P(r)
N=101

Figure 6. Distribution of the ratio of synchronization time between networks A and B to the
learning time of an attacker E.

Disorder generated by interacting neural networks 11183

3.3. Security of neural cryptography

In the previous paragraph we have seen that two interacting neural networks approach each
other faster than any other network which is just learning the communication by using identical
rules. Is there any algorithm which is faster than the attacking network defined above? In any
case the attacker should remain synchronized with the partners if she has achieved complete
overlap. Therefore, in the case of agreement, τE = τA, the attacking network E should use an
identical algorithm to A and B. However, when they do not agree the attacking network can
indeed improve the probability of synchronization as was shown by the group of Shamir and
co-workers [20]. In the case of disagreement at least one hidden unit σ E

k disagrees with the
corresponding σ A. Of course, the attacker does not know which one. But she knows that the
probability of disagreement is larger for smaller internal fields. Hence E changes the direction
of the hidden unit with the smallest absolute value of the field and trains the corresponding
weights. Shamir and co-workers have shown that this modification increases the probability
for E to synchronize before A and B are synchronized. Hence if the attacker uses an ensemble
of many attacking networks, there is a good chance that at least one of them has found the
correct key. Reading all of the encrypted messages the attacker is able to find the one with
meaningful text.

Of course, if the probability PE of success is so low that it is computationally infeasible to
use the required number of attacking networks the system is considered to be secure. Hence
we have calculated PE as a function of model parameters [21]. It turns out that the probability
of success is sensitive to the depth L of the weights. Note that each weight can take 2L + 1
integer values. The numerical simulations indicate that the synchronization time increases
linearly with L2 whereas the probability PE decreases exponentially with L2,

tsync = AL2 PE = B exp(−yL2). (28)

This means that the security of the network improves when the parameter L is increased.
For a sufficiently large value of L, neural cryptography is secure.

It is desirable to increase the probability PE even further, i.e. to find high values of y

in (28). The idea is to use self-generated noise to make the attack more difficult without
destroying synchronization between the two partners. The usual noise cannot be added, since
it does not distinguish between interaction and learning. However, if the influence of noise
decreases if the two networks come close to each other it may improve security. Therefore,
the participating networks have to generate noise which becomes identical if the networks are
almost synchronized.

In fact we have found several kinds of self-generated noise which increases the value y

of (28). One method uses the feedback mechanism discussed previously in this contribution
[15]. The input of the hidden units is generated by the corresponding perceptron itself,
as described in section 2.1. Hence, when the perceptrons are identical they generate
identical inputs and remain identical. But when the networks differ by some fraction of
components, synchronization becomes difficult. One has to control the repulsive force by
another mechanism which resets the input to identical values depending on the number r of
steps with disagreement.

This protocol is public again, hence the attacker can make use of all the information.
Nevertheless, it turns out that the value y increases with the additional parameter r, as shown
in figure 7. As a consequence, the feedback mechanism improves the security of the key
generation.

Another method to increase the value of y (decrease the probability PE of a successful
attack) is a combination of neural cryptography with chaotic synchronization [23]. In
addition to the weights wk , each hidden unit obtains a chaotic map triggered by its internal

11184 W Kinzel and I Kanter

0 10 20 30 40 50

L2
10

-3

10
-2

10
-1

10
0

P
E

r = 0
r = 20
r = 40
r = 60
r = 80
r = 100

Figure 7. Probability PE of a successful attack as a function of L2 for different feedback parameters
r. The networks have K = 3 hidden units and N = 1000 weights per unit.

field. Synchronization of the weights synchronizes the corresponding chaotic maps, and
synchronized chaotic maps synchronize the weights. This coupled synchronization process, for
suitable values of the corresponding parameters, improves the security of neural cryptography.

4. Conclusions

Artificial neural networks are trained by a sequence of examples. In contrast to previous
studies, the examples are generated by the networks themselves. This leads to a rather
complex dynamics which is investigated in several different contexts.

If a single-neural network—a simple perceptron or a multilayer parity machine—is trained
on the negative of its own output, the network is generating a bit sequence whose statistical
properties are close to a random sequence. In fact, for the parity machine with discrete weights,
the sequence passed all tests on random numbers. Our networks with discrete weights are
identical to an ensemble of random walks with reflecting boundaries and self-generated noise.

When a network with different initial state is trained on such a sequence, it still receives
an overlap to the bit generator. In contrast, the prediction error is higher than for random
guessing. Hence, the disordered bit sequence is unpredictable but contains information about
the rule which generated it.

The multilayer committee machine which is trained on the negative of its output is an
algorithm for competing agents in a closed market (minority game). It may be considered
as a system of neural networks adapting to the history of success. We find that an algorithm
develops which performs better then random guessing. Successful cooperation emerges from
the interaction of neural networks.

When two neural networks are trained on their mutual output bits a novel phenomenon
appears: as a function of the parameter values of the models a transition to synchronization
occurs. In the synchronized phase the weights still perform a kind of random walk on
a high-dimensional hypersphere, but the two weight vectors are identical (up to a sign).

Disorder generated by interacting neural networks 11185

Synchronization by mutual learning is a novel principle whose biological implications still
have to be investigated.

We found an application for this phenomenon in the field of cryptography.
Synchronization of multilayer networks can be used for generating a secret key over a public
channel. Two partners are exchanging their output bits, learning them and arrive at common
weight vectors which they use as a key for encryption. Surprisingly, any attacker who knows
all the details of the exchanged information as well as the architecture of the participating
networks cannot calculate the secret key, at least with limited computer power. Learning by
interacting is more efficient than learning by listening.

The security of neural cryptography has been investigated quantitatively. When an
ensemble of attacking networks is used the probability of an successful attack can be decreased
in several ways: increasing the depth of the synaptic weights, adding self-generated noise by
a feedback mechanism and combining networks with synchronization of chaotic maps.

In summary, interacting neural networks have a complex dynamics. They produce
disordered bit sequences and synchronize. Applications to econophysics and cryptography
have been found.

Acknowledgment

This overview is based on enjoyable collaborations with Richard Metzler, Michal Rosen-Zvi,
Andreas Ruttor, Einat Klein and Rachel Mislovaty. This work has been supported by the
German Israel Science Foundation (GIF) and the Minerva Center of the Bar Ilan University.

References

[1] Hertz J, Krogh A and Palmer R G 1991 Introduction to the Theory of Neural Computation (Redwood City,
CA: Addison-Wesley)

[2] Engel A and Van den Broeck C 2001 Statistical Mechanics of Learning (Cambridge: Cambridge University
Press)

[3] Hartmann A and Rieger H 2002 Optimization Algorithms in Physics (Berlin: Wiley-VCH)
[4] Eisenstein E, Kanter I, Kessler D A and Kinzel W 1995 Generation and prediction of time series by a neural

network Phys. Rev. Lett. 74 6
[5] Weigand A and Gershenfeld N S 1994 Time Series Prediction (Santa Fe, NM: Addison-Wesley)
[6] Zhu H and Kinzel W 1998 Anti-predictable sequences: harder to predict than a random sequence Neural

Comput. 10 2219–30
[7] Metzler R, Kinzel W, Ein-Dor L and Kanter I 2001 Generation of unpredictable time series by a neural network

Phys. Rev. E 63 056126
[8] Freking A, Kinzel W and Kanter I 2002 Phys. Rev. E 65 050903(R)
[9] Miyazaki Y, Kinzel W and Shinomoto S 2003 J. Phys. A: Math. Gen. 36 1315–22

[10] Rosen-Zvi M, Kanter I and Kinzel W 2003 Time series prediction by feedforward neural networks—is it
difficult? J. Phys. A: Math. Gen. at press

[11] Econophysics homepage: http://www.unifr.ch/econophysics
[12] Challet D, Marsili M and Zecchina R 2000 Statistical mechanics of systems with heterogeneous agents: minority

games Phys. Rev. Lett. 84 1824–7
[13] Metzler R, Kinzel W and Kanter I 2000 Interacting neural networks Phys. Rev. E 62 2555
[14] Kinzel W and Urbanczik R 1998 J. Phys. A: Math. Gen. 31 L27–30
[15] Ruttor A, Kinzel W and Kanter I 2003 in preparation
[16] Stinson D R 1995 Cryptography: Theory and Practice (Boca Raton, FL: CRC Press)
[17] Kanter I, Kinzel W and Kanter E 2002 Secure exchange of information by synchronisation of neural networks

Europhys. Lett. 57 141–7
[18] Rosen-Zvi M, Kanter I and Kinzel W 2002 J. Phys. A: Math. Gen. 35 L707–13

11186 W Kinzel and I Kanter

[19] Rosen-Zvi M, Klein E, Kanter I and Kinzel W 2002 Phys. Rev. E 66 066135
[20] Klimov A, Mityagin A and Shamir A 2002 Analysis of neural cryptography ASIACRYPT
[21] Mislovaty R, Perchenok Y, Kanter I and Kinzel W 2002 Phys. Rev. E 66 066102
[22] Kanter I and Kinzel W unpublished
[23] Mislovaty R, Klein E, Kanter K and Kinzel W Public channel cryptography by synchronization of neural

networks and chaotic maps at press

